Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report spectroscopic and time-resolved experimental observations to characterize the state in ions. We access this state from the metastable manifold and observe an unexpectedly long lifetime of that allows visible Rabi oscillations and resolved-sideband spectroscopy. Using a combination of coherent population dynamics, high-fidelity detection and heralded state preparation, and optical pumping methods, we measure the branching ratios to the , and states to be , 0.639(2), and , respectively. The branching ratio to the is compatible with zero within our experimental resolution. We also report measurements of Landé -factor of the state. Further, the branching ratio of the to decay in was measured to be 0.188(3), improving its relative uncertainty by an order of magnitude. Our measurements provide experimental benchmarks for better understanding the atomic structure of ions, which still lacks accurate numerical descriptions, and the use of high-lying excited states for partial detection and qubit manipulation in the architecture.more » « lessFree, publicly-accessible full text available December 1, 2026
-
The interplay between coherence and system-environment interactions is at the basis of a wide range of phenomena, from quantum information processing to charge and energy transfer in molecular systems, biomolecules, and photochemical materials. In this work, we use a Frenkel exciton model with long-range interacting qubits coupled to a damped collective bosonic mode to investigate vibrationally assisted transfer processes in donor-acceptor systems featuring internal substructures analogous to light-harvesting complexes. We find that certain delocalized excitonic states maximize the transfer rate and that the entanglement is preserved during the dissipative transfer over a wide range of parameters. We investigate the reduction in transfer caused by static disorder, white noise, and finite temperature and study how transfer efficiency scales as a function of the number of dimerized monomers and the component number of each monomer, finding which excitonic states lead to optimal transfer. Finally, we provide a realistic experimental setting to realize this model in analog trapped-ion quantum simulators. Analog quantum simulation of systems comprising many and increasingly complex monomers could offer valuable insights into the design of light-harvesting materials, particularly in the nonperturbative intermediate parameter regime examined in this study, where classical simulation methods are resource intensive.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Trapped ions offer long coherence times and high fidelity, programmable quantum operations, making them a promising platform for quantum simulation of condensed matter systems, quantum dynamics, and problems related to high-energy physics. We review selected developments in trapped-ion qubits and architectures and discuss quantum simulation applications that utilize these emerging capabilities. This review emphasizes developments in digital (gate-based) quantum simulations that exploit trapped-ion hardware capabilities, such as flexible qubit connectivity, selective mid-circuit measurement, and classical feedback, to simulate models with long-range interactions, explore nonunitary dynamics, compress simulations of states with limited entanglement, and reduce the circuit depths required to prepare or simulate long-range entangled states.more » « less
-
Electron transfer is at the heart of many fundamental physical, chemical, and biochemical processes essential for life. The exact simulation of these reactions is often hindered by the large number of degrees of freedom and by the essential role of quantum effects. Here, we experimentally simulate a paradigmatic model of molecular electron transfer using a multispecies trapped-ion crystal, where the donor-acceptor gap, the electronic and vibronic couplings, and the bath relaxation dynamics can all be controlled independently. By manipulating both the ground-state and optical qubits, we observe the real-time dynamics of the spin excitation, measuring the transfer rate in several regimes of adiabaticity and relaxation dynamics. Our results provide a testing ground for increasingly rich models of molecular excitation transfer processes that are relevant for molecular electronics and light-harvesting systems.more » « less
-
Abstract The SAT problem is a prototypical NP-complete problem of fundamental importance in computational complexity theory with many applications in science and engineering; as such, it has long served as an essential benchmark for classical and quantum algorithms. This study shows numerical evidence for a quadratic speedup of the Grover Quantum Approximate Optimization Algorithm (G-QAOA) over random sampling for finding all solutions to 3-SAT (All-SAT) and Max-SAT problems. G-QAOA is less resource-intensive and more adaptable for these problems than Grover’s algorithm, and it surpasses conventional QAOA in its ability to sample all solutions. We show these benefits by classical simulations of many-round G-QAOA on thousands of random 3-SAT instances. We also observe G-QAOA advantages on the IonQ Aria quantum computer for small instances, finding that current hardware suffices to determine and sample all solutions. Interestingly, a single-angle-pair constraint that uses the same pair of angles at each G-QAOA round greatly reduces the classical computational overhead of optimizing the G-QAOA angles while preserving its quadratic speedup. We also find parameter clustering of the angles. The single-angle-pair protocol and parameter clustering significantly reduce obstacles to classical optimization of the G-QAOA angles.more » « less
-
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions, arising from the competition between unitary evolution and measurements. Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions at the level of quantum trajectories are two primary examples of such transitions. Investigating a many-body spin system subject to periodic resetting measurements, we argue that many-body dissipative Floquet dynamics provides a natural framework to analyze both types of transitions. We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems as a function of measurement probabilities. A measurement induced transition of the entanglement entropy between volume law scaling and sub-volume law scaling is also present, and is distinct from the ordering transition. The two phases correspond to an error-correcting and a quantum-Zeno regimes, respectively. The ferromagnetic phase is lost for short range interactions, while the volume law phase of the entanglement is enhanced. An analysis of multifractal properties of wave function in Hilbert space provides a common perspective on both types of transitions in the system. Our findings are immediately relevant to trapped ion experiments, for which we detail a blueprint proposal based on currently available platforms.more » « less
An official website of the United States government
